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ABSTRACT

Averaged models are used to represent cavitating bub-
bly mixtures at the sub-grid computational level. Though
such averaging techniques are widely used, the rela-
tive computational performance of various adaptations re-
mains unknown. The accuracy and computational ef-
ficiency of two such models, one ensemble-averaging
and one volume-averaging, addresses this issue. Re-
sults show that the relative computational cost of the
methods depends upon the degree of bubble polydisper-
sity. The ensemble-averaged model requires more quadra-
ture nodes for broader population sizes and increasingly
broad populations become computationally untenable. A
moment-based method addresses this shortcoming. It uses
a Gaussian closure and is augmented via long short-term
memory recurrent neural networks for high-order statis-
tics. Results show that this approach achieves small rel-
ative errors for even high-order statistical moments using
only five degrees of freedom, significantly fewer than the
hundreds required by classes methods.

INTRODUCTION

Cavitation bubbles oscillate, expand by several orders
of magnitude in radius, and violently collapse. Flow
features of cavitation bubble mixtures can be as sen-
sitive to this bubble motion as they are to bulk-scale
pressure waves (Reisman et al., 1998). Thus, faithful
representations of the bubble-scale dynamics are cen-
tral to the predictive capabilities of bubbly flow simula-
tions. Numerous medical engineering applications mo-
tivate such simulation development. Bubbles nucleate
during lithotripsy (Pishchalnikov et al., 2003) to ablate
kidney stones, though they can also emerge near pro-
pellers (Sharma et al., 1990; Ji et al., 2012) or in hydraulic
pipe systems (Weyler et al., 1971; Streeter, 1983), caus-
ing damage and noise. Large numbers of micron-scale
bubbles often emerge in these engineering flows, while
the bulk-flow features can be meter-scale or larger (Bren-
nen, 1995). In such cases, resolving the bubble interfaces
and their dynamics are be prohibitive and must be mod-
eled. Note that phenomena like sheet caviation over pro-
pellers can involve micron-scale bubbles, larger-scale gas
and vapor regions, and periods of transition between the

two. Faithful models for this do not yet exist and are not
considered herein.

Averaging approaches are useful when the bub-
ble interfaces cannot be resolved. They couple a
Rayleigh–Plesset-like equation for the bubble dynamics
to the motion of the continuous phase. Such models are ei-
ther ensemble- (Zhang and Prosperetti, 1994) or volume-
averaging (Biesheuvel and van Wijngaarden, 1984). We
consider the relative computational cost and agreement
between these methods. Of particular interest is the abil-
ity of the models to represent polydisperse bubble pop-
ulations. Polydispersity has a significant impact of the
flow, damping and dispersing averaged pressure fluctua-
tions (Colonius et al., 2008). Representing these dynam-
ics requires statistical-moments of the bubble population.
A typical technique for computing these moments is the
method of classes (Vanni, 2000). It discretizes the inte-
grand into bins and evolves them. However, the number
of bins must increase as the broadness of the population
increases to maintain the same accuracy.

A moment method can address this issue; they
represent the integrand via parameters of a probability
density function. This approach can represent, for ex-
ample, bubble coalescence and breakup (Heylmun et al.,
2019) and dilute gas-particle flows (Capecelatro and Des-
jardins, 2013). The model evolves a set of shape param-
eters for a Gaussian distribution. This evolution follows
from a population balance equation and is closed via prob-
ability calculus. However, higher-order moments can de-
velop during bubble cavitation. Representing these mo-
ments via more general density functions is expensive and
often ill-posed. Instead, neural networks present a unique
opportunity to augment the imperfect dynamical system
via only simple training data based upon Monte Carlo pre-
dictions. In particular, long short-term memory (LSTM)
recurrent neural networks (RNNs) are well-suited for this
task. They can represent the time-dependent structure of
bubble dynamics and have been used to improve or ac-
celerate prediction of many fluid dynamics problems, in-
cluding bubble advection (Wan et al., 2019) and near-wall
turbulence (Srinivasan et al., 2019).

We first present the typical averaging models
and their principal differences. The specific models we
use follows, including their implementation in a numeri-



cal framework. The computational performance of these
models is compared via a case study of an acoustically
excited dilute bubble screen. Our new moment-based for-
mulation is then presented. The method performance is
evaluated for Rayleigh–Plesset bubbles under static pres-
sure ratios. Future work will consider this model in a two-
way coupled flow simulation environment.

AVERAGED MODEL DESCRIPTIONS

Volume-averaging (Biesheuvel and van Wijngaarden,
1984) (figure 1 (a)) is a deterministic approach that rep-
resents bubbles as individual dynamic features; they are
sampled from a distribution of equilibrium bubble radii
and coupled to the liquid phase via local volume averag-
ing and, in a computational setting, a volumetric smearing
operator (Fuster and Colonius, 2011). Ensemble averag-
ing (Zhang and Prosperetti, 1994) (figure 1 (b)) is instead
a stochastic approach. This model uses bubble population
moments to derive the governing mixture-averaged flow
equations and bubble dynamics are evaluated on the Eu-
lerian grid and advected via a transport equation. Both
approaches represent polydispersity as a probability den-
sity function for the equilibrium bubble size. For the
volume-averaged approach, knowledge of mean quanti-
ties requires an ensemble of simulations with different
realizations of randomized bubble locations (and other
properties), whereas the ensemble-averaged method bins
and evolves the probability density function for the equi-
librium bubble radius (Ando et al., 2011). The specific
models we use assume that there is no relative motion be-
tween the bubbles and the carrier phase, that the bubbles
are dilute, and that the gas density is much smaller than
the liquid density.

MODEL FORMULATION

The flow of a dilute suspension of evolving bubbles in a
compressible liquid is cast in the quasi-conservative form

∂q
∂ t

+∇ ·F = s (1)

where q = {ρ,ρu,E} are the conservative variables, F =
{ρu,ρuu+ pI,(E + p)u} are the fluxes, s are source
terms, and ρ , u, p, and E are the mixture density, velocity
vector, pressure, and total energy, respectively. Govern-
ing equations (1) are solved using a fifth-order accurate
finite-volume scheme with WENO reconstruction to com-
pute spatial derivatives and the third-order accurate TVD
Runge–Kutta algorithm for time integration.

The ensemble-averaged equations follows from
Zhang and Prosperetti (1994) and Bryngelson et al.
(2019). The polydisperse bubble population is log-
normally distributed with shape parameter σp (Ando
et al., 2011). A classes method with Nbin bins evolves its
moments for the equilibrium bubble sizes Ro as R(Ro) =
{R1,R2, . . . ,RNbin}. In this case s = 0 and the pressure is

p = (1−α)pl +α

(
R3pb

R3
−ρ

R3Ṙ2

R3

)
, (2)

where Ṙ are the bubble radial velocities, pb are the bubble
pressures, and the associated over-bars are statistical mo-
ments with respect to the Ro probability density function.
The stiffened gas equation of state determines the liquid
pressure pl . A transport equation advects the void fraction
as

∂α

∂ t
+u ·∇α = 3α

R2Ṙ
R3

. (3)

The volume averaging method follows Maeda
and Colonius (2018): Nbub bubbles are located at La-
grangian points x and evolve dynamically. The local
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Figure 1: Schematic illustration of (a) volume- and (b) ensemble-averaged methods.
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Figure 2: The model flow system.

void fraction field α(x) is smeared onto the Eulerian grid
via a Gaussian regularization kernel, modifying the void
fraction advection equation (Maeda and Colonius, 2018).
Thus, the source terms of (1) for the volume-averaged
method are

s =
q

1−α
Dtα, (4)

where Dt is the substantial derivative operator, which
transports the void fraction field.

The bubble dynamics in both cases are modeled
as spherical gas regions that do not interact with each
other. Their evolution is driven by the far-field pressure
fluctuations p∞ and modeled by the Keller–Miksis equa-
tion (Keller and Miksis, 1980). The resulting model dis-
persion can reproduce the sound speeds of actual bubbly
mixtures (Ando, 2010).

NUMERICAL METHODS

The governing equations (1) are solved with the multi-
component flow code (MFC), an open-source compress-
ible flow solver. An exposition of the solver is presented
elsewhere (Bryngelson et al., 2019), so only a brief de-
scription is given here. Finite volumes discretize space
and a 5th-order-accurate WENO scheme reconstructs the
primitive variables at their faces (Coralic and Colonius,
2006). The HLLC approximate Riemann solver computes
the associated fluxes (Toro et al., 1994) and a 3rd-order-
accurate TVD Runge–Kutta scheme advances the solution
in time (Gottlieb and Shu, 1998).

MODEL COMPUTATIONAL PERFORMANCE
AND COMPARISON

Test problem setup and model equivalency
An acoustically excited dilute bubble screen

serves as a case study for comparisons between the aver-
aged methods (Bryngelson et al., 2019). A single cycle of
a 300 kHz, pA = 100 kPa sinusoidal pressure pulse p∞(t)
propagates towards a cubic bubble screen of initial void
fraction αo and side-length H = L/5. The bubbles have

mean radius 10µm. The domain has length L = 25 mm
and characteristic-based boundary conditions suppress re-
flections at all domain boundaries. The quantity of interest
is the pressure at the center of the bubble screen, po(t).
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Figure 3: Evolution of the bubble-screen-centered pres-
sure for both averaged techniques. αo = 4× 10−5 is the
initial void fraction and σp = 0.3 is the degree of poly-
dispersity. The shaded region shows the ±2σd envelope
of individual simulations, which σd is the standard de-
viation of those simulations. The mean volume-averaged
curve is computed from 10 such simulations. Time is non-
dimensionalized by the sound speed and the bubble screen
side-length.

The first consideration is that the ensemble- and
volume-averaged methods give the same result. Figure 3
shows the pressure at the center of the bubble screen
for our test problem. The ensemble-averaged pressure
matches the mean volume-averaged pressure to within
two standard deviations of the individual simulations σd .
Thus, the models converge to the same result to at least
within this accuracy.

Computational expense
The computational cost associated with the aver-

aged models is an important consideration for large scale
flow simulations. This cost depends upon the number of
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Figure 4: (Left) Convergence of ensemble-averaged simulations with Nbin for varying degrees of polydispersity σp.
(Right) The time-step cost Ts in seconds for simulations of varying Nbin and αo, where Nbin is the number of bins used
to approximate the log-normal bubble size density function.

bubbles (associated with αo), the number of bins required
to represent polydispersity Nbin, and the number of grid
points associated with the simulation grid N. We first con-
sider the expense associated with polydispersity, which
can be significant because at least two bubble dynamics
equations (depending upon the bubble model) append the
flow equations for each bin.

Figure 4 (left) shows the error in the pressure at
the center of the bubble screen when varying the number
of bins used to discretize the probability density function.
The error decreases exponentially, with larger errors ob-
served for broader populations (larger σp). For σp = 0.3,
Nbin = 11 this error is 8% of pA and for Nbin = 101 the er-
ror is 10−4%. Thus, broad populations require many bins
(compared to the number of flow variables).

We next evaluate the averaged grind time per
simulation time step Ts. Figure 4 (right) shows this Ts for
varying bin numbers Nbin. Ts is independent of Nbin for
the volume averaging cases because bins are not required
from this method to represent polydispersity. Since in-
creasing αo entails evolving more bubbles in the volume-
averaged case, Ts increases with αo. For the ensemble
averaged cases, Ts is approximately linear for Nbin & 10.
This is also the regime associated with most polydisperse
simulations.
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Figure 5: The time-step cost Ts in seconds for varying N
and αo.

Figure 5 shows the Ts for different grid resolu-
tions N. Ensemble-averaged cases are linear for all N be-
cause the bubble variables exist everywhere on the Eule-
rian mesh. For the volume-averaged cases Ts plateaus for
small N. This is because evaluating the individual bubble
dynamics exceeds the cost of evolving the Eulerian flow
variables for such cases. Figure 5 also shows that for even
a small Nbin = 11 the ensemble-averaged simulations are
more expensive than their volume-averaged counterparts
for large N or small αo. Note that this does not account for
the number of samples required for the volume-averaged
cases to converge to a homogeneous mean flow (Bryngel-
son et al., 2019). The ensemble-averaged simulations are
cheaper than the volume averaged cases for monodisperse
populations (Nbin = 1). Thus, we next focus on more ef-
ficient representations of polydisperse population dynam-
ics.



ACCELERATED MOMENT COMPUTATION

Moment-based method formulation
The polydisperse bubble dynamics of sec-

tion entails three uncertain variables: R, Ṙ, and Ro. We
consider Ro-monodisperse cases to simplify our model
formulation, though extending this is straightforward.
The probability of any such state~x = {R, Ṙ} is

P = P(~x,~θ, t), (5)

where P is a bivariate probability density function with
parameters (e.g. means, shape parameters) ~θ and mo-
ments ~µ′. In this case there are five moments, as specified
by

µ
′
mn =

∫
RmṘnPdx, (6)

where m+n = 1 and 2. An equation for P follows from a
master or population balance equation

dP
dt

=
∂P
∂ t

+
∂

∂R
(PṘ)+

∂

∂ Ṙ
(PR̈) = 0. (7)

Thus, the moment system evolves as

∂~µ′

∂ t
=~f(~µ′,x), (8)

where~f is over the moments {m,n}:

fmn = mµ
′
m−1,n+1 +n

∫
R̈(~x)RmṘn−1P(~x,~θ)d~x. (9)

In (9), R̈ follows from the bubble dynamics equation
and the integration is over the positive half-space in R
and the full space in Ṙ. We call this the PDF-based
model (or PDF) throughout. (8) is a nonlinear system of
integro-differential equations that only represents popula-
tions with no third- or higher-order moments. However,
a machine-learned forcing term~fML appends (8) to repre-
sent such moments:

∂~µ′

∂ t
=~f(~µ′)+~fML(~µ′). (10)

A separate single-layer LSTM RNN with 32 time delays
comprises~fML. Monte Carlo results for ~µ′(t) trains the
neural network for cases po/p∞ = {0.15,0.25, . . . ,0.85}
trains the neural network. ML denotes this approach
hereon. In all cases the second-order accurate Adams–
Bashforth method evaluates the time derivative.

Model bubble dynamics
Non-interacting, isothermal, and surface-

tension-neglected gas bubbles present a simple test case

for the method. They follow from a Rayleigh–Plesset-like
equation

RR̈+
3
2

Ṙ2 +
4

Re
Ṙ
R
=

(
Ro

R

)3γ

− p∞

po
(11)

where γ = 1.4 is the adiabatic compression index, pv, po,
and p∞ are the vapor, ambient, and liquid far-field pres-
sures, Re is the Reynolds number, and the pressure ratio
po/p∞ modifies the bubble collapse strength.

Performance for low-order moments
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Figure 6: Low-order bubble population moments (a)–
(e) for po/p∞ = 0.3 using the PDF-based model (PDF),
the neural-network-augmented model (ML), and Monte
Carlo simulation (exact). The second-order moments are
normalized by their t = 0 values and tc is the nominal
Rayleigh collapse time.

We first evaluate the accuracy of the first- and
second-order moments, as determined by the Gaussian
distribution function. Figure 6 shows their evolution for
a low pressure-ratio po/p∞ = 0.3 case. For both the ex-
act and PDF-based model (PDF) the µ ′02 and µ ′20 mo-
ments grow and decay from period-to-period. The co-
variance moment µ ′11, and thus correlations between the
radii and their velocities, are also significant. The exact
moments damp from period-to-period, whereas the mo-
ments of the PDF-based model are periodic. Thus, for
this low pressure-ratio case the PDF-based model can-
not accurately represent the actual statistics. However,
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the machine-learning augmented approach (ML) closely
matches the exact result, even for this relatively low
pressure-ratio. This includes the relative damping of all
moments, which the PDF-based model could not repre-
sent.

Figure 7 shows the relative model errors

ε(∗)≡ ‖∗MC−∗model‖2

‖∗MC‖∞

(12)

of the PDF-based model and its augmentation via LSTM
RNNs (MC indicates Monte Carlo truth values). For the
PDF-based model ε increases with decreasing po/p∞ and
bubble velocity moment µ ′0∗ errors are largest. For pres-
sure ratios near 1 the dynamics are nearly linear and ε

is small. The machine learning approach (ML) signif-
icantly decreases the model error for all moments for
po/p∞ . 0.5, while the errors for larger pressure ratios
only decrease modestly. For example, for po/p∞ = 0.2
the ML error is only 8% of the PDF error for µ ′01 and
0.9% of it for µ ′02.
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0 0.2 0.4 0.6 0.8 1

(b) Kurtosis

po/p∞

∗ = κR κṘ

Figure 8: (a) Maximum Pearson’s moment coefficient of
skewness γ1 and (b) excess kurtosis κ over ten cycles of
the mean bubble motion for varying pressure ratio.

The normality of the evolving bubble dynamics
determines the validity of the Gaussian PDF used. Fig-
ure 8 shows measures of the third- and fourth-order mo-
ments that develop during the bubble dynamics. Monte
Carlo simulations compute these moments. For po/p∞→

1 the dynamics are nearly linear and γ1 and κ are both
small (less than about unity). However, both skewness
and kurtosis become large for smaller po/p∞: κṘ = 126.7
and γ1,Ṙ = 4.9 for po/p∞ = 0.1. This skewness re-
sults from the slow bubble growth when compared to its
rapid collapse. Thus, this PDF-based model cannot rep-
resent the low-order moments for small pressure ratios.
This explains the increased performance observed for the
machine-learning augmented model in figure 7.

Performance for high-order moments
The ensemble-averaged model requires higher-

order functions of the random variables. Following Bryn-
gelson et al. (2019), these are µ ′3(1−γ)0, µ ′30, µ ′21, and µ ′32.
Since P is a multivariate Gaussian distribution function,
the low-order moments determine the higher-order ones
analytically. Adaptive Gaussian quadrature computes the
non-integer moment µ ′3(1−γ)0 via (6).
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Figure 9: Model error ε associated with specific distribu-
tion moments (a)–(d) for the PDF-based model (PDF) and
the ML-augmented PDF-based model augmented with an
additional LSTM RNN for these moments (ML).

Figure 9 shows the relative model error of the



ensemble-averaged model moments. Similar to figure 7,
the PDF-based model errors grow with decreasing pres-
sure ratio. These errors are large for small po/p∞, and the
highest-order moment µ ′32 has the largest error. To treat
this, we train an additional LSTM neural network with
output~gML as

~µ′ML = ~µ′HG(~µ
′)+~gML(~µ′), (13)

where ~µ′HG is the column vector of high-order moments
approximated via Gaussian statistics and ~µ′ML are the pre-
dictions. The truth-value of the ensemble-averaged mo-
ments and ~µ′ train the neural network ~gML. Figure 9
shows that this approach reduces ε from the PDF-based
model results for all moments. For example, for po/p∞ =
0.1 the ML error is only 7% of the PDF error for the µ ′32
moment and 20% of it for µ ′3(1−γ)0.

DISCUSSION AND CONCLUSIONS

We first presented two averaged models: one ensemble-
averaging and one volume-averaging. These models can
represent dilute bubble flow dynamics, though their im-
plementations and, thus, computational costs differ. The
acoustic response of a dilute bubble screen served as a test
problem. Results showed that the methods produced the
same response, though their computational costs varied,
depending on the grid resolution, bubble void fraction,
and degree of polydispersity. Ensemble-averaging was
cheaper than volume-averaging, except for broadly poly-
disperse bubble populations. This resulted from the many
bins required to represent the associated bubble dynamics,
and thus the poor suitability of the method of classes for
such problems.

A moment-based method was formulated to ad-
dress this issue. It represented and evolved the underlying
polydispersity in terms of its statistical moments. This
approach was based upon a population balance equation
and closed via a Gaussian statistics ansatz for the prob-
ability density function. This closure is exact for linear
bubble dynamics. Further, it only entails five additional
dependent variables: the first- and second-order moments
with respect to the Gaussian distribution function. How-
ever, for nonlinear Rayleigh–Plesset bubble dynamics the
model error can be significant. This error increased with
decreasing pressure ratio and thus more violent bubble
dynamics. This resulted from the formation of third-,
fourth- and possibly higher-order moments. Such mo-
ments were not represented by the Gaussian distribution
function. Unfortunately, there is no simple approach to
represent such high-order moments: higher-order distri-
bution functions often have no unique transformation be-
tween the moments and the distribution parameters, and
traditional quadrature moment methods become expen-
sive in this regime. Instead, we trained a recurrent neu-

ral network on Monte Carlo truth data to represent such
moments, augmenting the dynamics of the low-order mo-
ments and improving the evaluation accuracy of the high-
order ones. This resulted in significantly smaller model
errors for all pressure ratios. For example, for po/p∞ =
0.2 the ML model error was 0.9% of the Gaussian-only
moment method for the µ ′02 moment. For the lowest pres-
sure ratio case the error was only 7% of the PDF error
for the highest-order ensemble-averaged moment. Future
work will implement these models in two-way coupled
bubbly flow simulations.
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DISCUSSION #1

Pablo M. Carrica, Department of Mechanical Engineer-
ing, University of Iowa
Professor

The authors present a very good paper discussing
two averaging techniques for cavitating flows, as well as a
method to augment a moment-based representation of the
size distribution with machine learning.

1. The multigroup method or method of classes can
represent any polydisperse size distribution, includ-
ing bimodal or trimodal shapes, albeit at high cost
as the authors point out. The method of moments
requires knowing a priori the shape of the size pdf,
with considerable cost savings if the result matches
the proposed pdf shape. What would be the cost of
a method of moments if complex pdf’s can be ex-
pected from the polydisperse bubbly flow?

2. The improvements shown by the machine learning
technique are impressive. Can the authors comment
on the potential of using the technique to more com-
plex flows were for instance bubble breakup and co-
alescence can produce massive changes in size dis-
tributions and shapes?

3. Related to 2. and the prognosis to using machine
learning for more complex problems, what data
would be needed to train the neural networks in a
flow situation like sheet to cloud cavitation transi-
tion?

AUTHOR’S REPLY

We thank Professor Carrica for his thoughtful review of
our submission.

1. The method used here assumes a pdf shape that re-
mains constant through our simulations. However,
this is not a requirement of moment methods gen-
erally. Indeed, such a distribution must only be
able to be described by a finite set of moments. If
the evolving bubble dynamics entail complex dis-
tribution shapes, then higher-order moments will
be required. For significant pressure ratios, as was
shown in Figure 8, such moments (represented by
skewness and kurtosis) are significant indeed. Rep-
resenting these moments explicitly can be expen-
sive for QMOM-based methods, though the ML-
based approach here circumvents this via a learned
term.

2. The method used here can represent bubble breakup
and coalescence via source terms in the population

balance equations. However, it could be computa-
tionally expensive to resolve the time-stiff dynam-
ics of the moments that these features entail. Fur-
ther investigation in this area is required to deter-
mine if a ML-based model, perhaps in the spirit of
the one used here, can curtail these costs.

3. Direct numerical simulations are sufficient for
training a neural network to correct the moments
required for bubble-model closure. However, the
closure assumptions of the phase-averaged model
(e.g., small void fraction) come into question dur-
ing cloud cavitation transitions. The authors are
unaware of theory-based attempts to bridge this
chasm, though one is certainly needed before such
problems can be solved.

DISCUSSION #2

Jesse Capecelatro, Department of Mechanical Engineer-
ing, University of Michigan
Assistant Professor

I find that this paper acts as a useful guide for
students and scientists in pursuit of developing compu-
tationally efficient coarse-grained models for cavitating
bubbly flows. It is clear from this work that methods based
on ensemble averaging and volume averaging are able to
produce similar results, albeit at different cost. This is
especially true for polydisperse bubble distributions. To
address this, the authors present a novel approach for sim-
ulating dilute bubbly flows undergoing cavitation at rela-
tively low computational cost. A machine learning tech-
nique is employed, which led to significant improvement
of the predictions of high-order moments. While moment
methods have demonstrated success in other areas of mul-
tiphase flow, it has not been used to simulate cavitating
bubble populations. Furthermore, moment closure based
on machine learning is new and could have impact outside
the context of cavitating bubbly flows.

In this paper, a recurrent neural network was
trained on Monte Carlo truth data to inform closure for the
high-order moments. If someone wanted to adopt this ap-
proach, would they need to repeat this training process, or
is there a database where the model closure can be easily
adopted? Also, the moment closure problem exists out-
side of this community. For example, numerical simula-
tions of gas-solid flows sometimes rely on moment meth-
ods. A comment on this can be used in that context would
be interesting.

AUTHOR’S REPLY

We thank Professor Capecelatro for his kind comments on
our paper. The current model is not in a public database,



instead serving as a demonstration of ML-based closures
for moment systems. However, the Monte Carlo simu-
lations it entails are within the computational reach of a
single workstation or laptop.

We concur that the moment closure problem
is well studied outside of the bubble cavitation, and
even bubbly flow literature. For example, the quadra-
ture method of moments (QMOM) can close the moment
transport equations. However, QMOM might entail sig-
nificant computational expense for the complex distribu-
tions that form during bubble cavitation. We will address
this possibility (and how it complements our machine-
learning approach) in future work.
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